2011年3月11日发生在日本仙台港以东海域的9.0级地震及海啸(2011 Tōhoku earthquake and tsunami)引发的日本福岛**(Fukushima I Nuclear Power Plant)事故在过去二十天时间里引起了各路媒体的广泛报道。 在那些报道中, 常常出现诸如 “...的泄漏量为...居里”、 “...的空气浓度达到...贝克/立方米”、 “辐射量高达...希沃特” 之类的文字。 对普通读者来说, 这些文字的含义可能是令人困惑的, 因为它们所涉及的 “居里”、 “贝克”、 “希沃特”(简称 “希”, 也有媒体译为 “西弗”)等都是一般人平时很少有机会接触的辐射单位。


       这些辐射单位究竟是什么含义呢? 本文来做一个简单介绍。


       在介绍之前, 让我们先对本文所谈论的辐射做一个界定。若无特殊说明, 本文所谈论的辐射全都是指由核裂变(nuclear fission)反应产生的电离辐射(ionizing radiation)——即能对物质产生电离作用的辐射。 *事故所涉及的辐射及核疗设备所使用的辐射大都属于这一类型。


       现在进入正题。 有关辐射的单位大体可分为两类, 一类与辐射源有关, 另一类与吸收体有关。 我们先介绍前者。 对辐射源来说, 表征其特性的核心指标是作为辐射产生机制的核裂变反应的快慢程度, 具体地说, 是单位时间所发生的核裂变反应平均次数。 物理学家们将这一指标称为放射性活度(radioactivity), 它的单位叫做贝克勒尔(becquerel——符号为Bq)[注一], 简称贝克, 其定义为每秒钟一次核裂变。 贝克是国际单位制中的导出单位(derived unit)。


       很明显, 对于给定类型的辐射源来说, 放射性活度的高低与辐射源的质量有着直接关系, 辐射源的质量越大, 平均每秒钟发生的核裂变反应次数*越多, 放射性活度也*越高(有兴趣的读者可以想一想, 需要知道什么样的额外信息, 才能在放射性活度与质量之间建立定量关系?)。 由于核裂变反应是微观过程, 单枪匹马而论对宏观的影响是微乎其微的, 因此贝克是一个很小的单位, 实际应用时常常要用千贝克(kBq)和兆贝克(MBq)来辅助。


       除贝克外, 描述放射性活度还有一个常用单位叫做居里(curie——符号为Ci)[注二], 它是贝克的370亿倍(3.7×1010倍)。 换句话说, 一个放射性活度为1居里的辐射源平均每秒钟发生370亿次核裂变反应。 有读者可能会问: “370亿” 这一古怪数字是哪里来的? 答案是: 来自于一克镭(radium)同位素226Ra每秒钟的大致衰变次数。 与贝克相反, 居里是一个很大的单位, 实际应用时常常要用毫居里(mCi)和微居里(μCi)来辅助。 居里不是国际单位制中的单位, 但应用广泛程度不在贝克之下。 不同*对这两个单位有不同的喜好, 比如在澳大利亚, 贝克用得较多; 在美国, 居里用得较多; 而在欧洲, 两个用得差不多多。


       由于放射性活度与辐射源的质量有关, 又比质量更能准确反映辐射源的基本特征——辐射能力——的强弱, 因此当人们谈论核事故中辐射源的泄漏时, 常常会用放射性活度的单位, 即贝克和居里, 来描述泄漏数量。 比如美国能源与环境研究所(Institute for Energy and Environmental Research)近日发布的一份报告宣称震后前11天里福岛**的碘(iodine)同位素131I的泄漏总量约为2400000居里(以放射性活度而论相当于2.4吨镭同位素226Ra, 不过由于131I的半衰期很短, 相应的质量要小得多, 对环境的危害则主要是短期的)。 当泄漏出的辐射源沾染到别处时, 人们除了关心泄漏总量外, 还常常要了解受沾染地区单位面积土地、 单位体积空气、 或单位质量土壤中的辐射源数量, 描述那些数量的单位是贝克(或居里)每平方米、 每立方米、 或每千克等, 我们在新闻中也能见到它们的身影。 比如前苏联切尔诺贝利(Chernobyl)*事故在芬兰和瑞典造成的铯(caesium)同位素137Cs的沾染约为40千贝克每平方米。


       以上*是与辐射源有关的主要单位。 接下来介绍一下与吸收体有关的单位。 知道一个辐射源的放射性活度, 只是知道了它的辐射能力, 却不等于知道它所发射的辐射对吸收体的影响, 因为后者明显与距离辐射源的远近、 辐射源的类别、 吸收体的类别等诸多因素有关。 那么, 怎样才能描述辐射对吸收体的影响呢? 一种常用的手段, 是利用电离辐射能对物质产生电离作用这一基本特性, 通过测量它在标准状态下单位质量干燥空气中产生出的电离电荷的数量, 来衡量它对吸收体的影响。 这种手段产生出了一个叫做伦琴(roentgen——符号为R)的单位[注三], 它被定义为在标准状态下1千克干燥空气中产生0.000258库仑(2.58×10-4库仑)的电离电荷。 读者想必要问:“0.000258”这一古怪数字是哪里来的? 答案是: 来自于单位换算。 因为伦琴这一单位*初是在所谓的厘米⋅克⋅秒(cgs)单位制中定义的。 在那个单位制下, 它的定义是在标准状态下1立方厘米干燥空气中产生1静电单位的电离电荷。 有兴趣的读者可以对单位作一下换算, 证实一下“0.000258”这一古怪数字的由来。


       伦琴这个单位的使用范围比较狭窄, 主要是针对象X射线和 γ 射线那样的电磁辐射。 不过由于大气中的电离电荷比较容易测量, 因此它一直是一个常用单位。 除伦琴外, 描述辐射对吸收体影响的另一个常用单位叫做戈瑞(gray——符号为Gy)[注四]。 如果说伦琴是以电荷为指标来描述辐射对吸收体的影响, 那么戈瑞则是以能量为指标来描述辐射对吸收体的影响。 在辐射研究中, 人们把单位质量吸收体所吸收的辐射能量称为吸收剂量(absorbed dose), 戈瑞是吸收剂量的单位, 其定义是每千克吸收体吸收1焦耳的能量。 很明显, 伦琴与戈瑞这两个单位之间是存在关系的(因为电离需要耗费能量), 不过这种关系与吸收体的类型有关(有兴趣的读者可以想一想, 需要知道什么样的额外信息, 才能在伦琴与戈瑞之间建立定量关系?)。 戈瑞是国际单位制中的导出单位, 与戈瑞有关还有一个常用单位叫做拉德(rad), 它是 “辐射吸收剂量”(radiation absorbed dose)的英文缩写, 大小为戈瑞的百分之一(10-2)。


       伦琴、 戈瑞及拉德都是描述辐射对吸收体影响的常用单位, 但对于我们*关心的辐射对人体的危害来说, 它们都不是*好的单位, 因为辐射对人体的危害并不单纯取决于电离电荷或吸收能量的数量, 而与辐射的类型有关, 这种类型差异可以用一系列所谓的 “辐射权重因子”(radiation wieghting factor)来修正。 考虑了这一修正后的吸收剂量被称为剂量当量(dose equivalent), 它的单位则被称为希沃特(sievert——符号为Sv)[注五], 简称希。 希沃特是国际单位制中的导出单位, 其定义为:

以希沃特为单位的剂量当量=以戈瑞为单位的吸收剂量 × 辐射权重因子


       为了使该定义能够应用, 有必要列出一些主要辐射的辐射权重因子:

           辐射类型辐射权重因子

           X射线、 γ 射线、 β 射线1

           能量小于10 keV的中子5

           能量为10-100 keV的中子  10

           能量为100-2000 keV的中子   20

           能量为2-20 MeV的中子10

           能量大于20 MeV的中子5

           α 粒子及重核  20


       由上述表格不难看出, 中子辐射的辐射权重因子要比X射线、 γ 射线、 β 射线高得多, 这意味着对于同等的吸收剂量, 中子辐射对人体的危害要比X射线、 γ 射线、 β 射线大得多。 中子弹(neutron bomb)之所以是一种可怕的武器, 一个很重要的原因*在于此。


       希沃特不仅是剂量当量的单位, 而且还是描述辐射对人体危害性的另一个重要指标——有效剂量(effective dose)——的单位。 什么是有效剂量呢? 它是将人体内各组织或器官所吸收的剂量当量转化为均匀覆盖全身的等价剂量, 然后加以汇总的结果。 有效剂量这一概念之所以有用, 是因为在很多情况下, 人体内各组织或器官所受辐射的剂量当量是不均匀的, 有的器官多, 有的器官少。 有效剂量通过将这种不均匀性均匀化, 使我们能用一个单一指标来描述辐射对人体的总体危害, 从而有很大的便利性。 那么, 人体内各组织或器官所吸收的剂量当量如何才能转化为均匀覆盖全身的等价剂量呢? 答案是利用一系列所谓的 “组织权重因子”(tissue weighting factor), 它们与相应组织或器官所受辐射的剂量当量的乘积, *是均匀覆盖全身的等价剂量。 而汇总无非*是做加法——即对各组织或器官所对应的等价剂量进行求和, 因此:

有效剂量=Σ(剂量当量 × 组织权重因子)


       为了使该定义能够应用, 有必要列出一些主要组织或器官的组织权重因子(有兴趣的读者请想一想, 组织权重因子为什么都小于1?):

           组织或器官名称组织权重因子

           性腺  0.20

           肺、 结肠、 胃等  0.12

           膀胱、 胸、 肝、 脑、 肾、 肌肉等   0.05

           皮肤、 骨骼表面等0.01


       希沃特是一个很大的单位, 实际应用时常常要用毫希(mSv)或微希(μSv)来辅助。 比如一次胸部透视所受辐射的有效剂量约为几十个微希; 一次脑部CT所受辐射的有效剂量约为几个毫希; 一个人在正常自然环境中每年所受辐射的有效剂量也约为几个毫希。 人体短时间所受辐射的有效剂量在100毫希以上时, *会开始有不容忽视的风险, 剂量越大, 风险越高, 剂量若大到要直接动用希沃特这个单位(比如达到几个希沃特), 那么*算不死也基本只剩半条命了。 除希沃特外, 描述剂量当量或有效剂量还有一个常用单位叫做雷姆(rem), 它是 “人体伦琴当量”(roentgen equivalent in man)的英文缩写, 大小为希沃特的百分之一(10-2)。


       有效剂量由于是平均到全身后的剂量当量, 在使用时不必指定具体的器官或组织。 但无论有效剂量还是剂量当量, 它们作为吸收剂量, 其数值都与人体与辐射源的相对位置密切相关, 因此在用于描述辐射源的危害性时, 通常要指明吸收体的位置才有清晰含义。 此外, 在象核事故那样辐射持续存在的环境里, 人体所受辐射的有效剂量或剂量当量与暴露于辐射中的时间成正比, 因此在谈论时必须给出时间长短。 笼统地谈论一个不带时间限制的有效剂量或剂量当量, 比如 “福岛*内*新核辐射量达到400毫希”, 是没有意义的。


       以上*是对主要辐射单位的简单介绍, 希望有助于大家阅读和辨析新闻。 在本文的*后, 给有兴趣的读者留一道简单的习题: 若一个人的胸部受到能量20 keV、 吸收剂量2毫戈瑞的中子辐射照射, 胃部受到吸收剂量3毫戈瑞的X射线照射, 请问此人所受辐射的有效剂量是多少毫希?


注释

       1.该单位的命名是纪念法国物理学家贝克勒尔(Henri Becquerel, 1852-1908)。

       2.该单位的命名是纪念居里夫妇(Pierre Curie and Marie Curie)。

       3.该单位的命名是纪念德国物理学家伦琴(Wilhelm Röntgen, 1845-1923)。

       4.该单位的命名是纪念英国物理学家戈瑞(Louis Gray, 1905-1965)。

       该单位的命名是纪念瑞典学物理学家希沃特(Rolf Sievert, 1896-1966)。